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Abstract
An ultimate generalization of the maximum entropy principle is presented. An
entropic measure, which is optimized by a given arbitrary distribution with
the finite linear expectation value of a physical random quantity of interest, is
constructed. It is concave irrespective of the properties of the distribution and
satisfies the H-theorem for the master equation combined with the principle
of microscopic reversibility. This offers a unified basis for a great variety of
distributions observed in nature. As examples, the entropies associated with the
stretched exponential distribution postulated by Anteneodo and Plastino (1999
J. Phys. A: Math. Gen. 32 1089) and the κ-deformed exponential distribution
by Kaniadaki (2002 Phys. Rev. E 66 056125) and Naudts (2002 Physica A 316
323) are derived. To include distributions with divergent moments (e.g.,
the Lévy stable distributions), it is necessary to modify the definition of the
expectation value.

PACS number: 05.90.+m

Statistical distributions observed in nature have great diversity. In particular, a number of
distributions, which are anomalous in view of ordinary statistical mechanics, are found in
a variety of complex systems in their metaequilibrium states, including granular materials,
glassy systems, self-gravitating systems and biological systems. What is remarkable there is
that such metaequilibrium states often survive for periods much longer than typical time scales
of underlying microscopic dynamics. To understand better the properties of such states of
complex systems it is desirable to characterize these distributions within a unified framework
of the statistical principles. The maximum entropy principle can be thought of as one [1].
Quite often in physical experiments, what is measured is the distribution of a physical random
quantity (e.g., the energy) and not directly the entropy itself. Accordingly, it is of importance
to find the corresponding entropic measure optimized by the observed distribution under
appropriate constraints.

In this paper, we present the entropy-generating algorithm and construct an entropic
measure that is optimized by a given arbitrary distribution with the finite linear expectation
value of a physical random quantity. A question that arises then is how such a measure can

0305-4470/03/338733+06$30.00 © 2003 IOP Publishing Ltd Printed in the UK 8733

http://stacks.iop.org/ja/36/8733


8734 S Abe

possess the properties to be satisfied by the physical entropy. Here, we show that the proposed
measure is manifestly concave irrespective of the behaviour of the distribution and fulfils the
H-theorem for the master equation combined with the principle of microscopic reversibility.
We also explicitly derive the entropies associated with the stretched exponential distribution
and the κ-deformed exponential distribution, as examples.

Let us start our discussion by considering a continuous function f of s ∈ D ⊆ R, whose
range is [0, 1] and is assumed to be integrable over D

F =
∫

D

ds f (s) < ∞. (1)

f need not be a monotonic function, in general.
In terms of a probability distribution {pi}i=1,2,...,W with W being the number of accessible

states, we define the following quantity:

A[p; s) =
W∑
i=1

(pi − f (s))+ (2)

which can be thought of as a generalization of the quantities considered in [2, 3]. In this
equation, the symbol (x)+ stands for

(x)+ = max{0, x} (3)

which satisfies

(λx + (1 − λ)y)+ � λ(x)+ + (1 − λ)(y)+ (∀λ ∈ (0, 1)) (4)

(x)+ = xθ(x) (5)

where θ(x) is the Heaviside unit step function defined by θ(x) = 0 for x < 0 and θ(x) = 1 for
x > 0. Though we are considering a discrete distribution, generalizations of the subsequent
results to the continuous case are straightforward. In the case when the distribution is
continuous, the range of f should be extended from [0, 1] to [0, ∞), in general.

The quantity in equation (2) has some remarkable properties. Among others, what we
note here are the following two:

0 < A[p; s) < 1 (6)

A[λp + (1 − λ)p′; s) � λA[p; s) + (1 − λ)A[p′; s) (∀ λ ∈ [0, 1]). (7)

Equation (7) directly follows from equation (4).
Next, we consider the integral

I [p] =
∫

D

ds(1 − A[p; s)). (8)

Clearly, this is a positive functional due to equation (6). Using the expression in
equation (5), we find this integral to be rewritten as follows:

I [p] =
W∑
i=1

∫
D

ds(pi − f (s))[1 − θ(pi − f (s))] + WF (9)

where F is given in equation (1).
The entropy-generating algorithm presented here consists of identifying the generalized

entropy, S, with the positive functional I :

S[p] = kI [p] + a (10)
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where k and a are constants, and in particular k is positive. Since the entropy should vanish
for the completely ordered state, pi = p

(0)
i = δin (with n a natural number between 1 and

W ), the constant a satisfies the condition: kI [p(0)] + a = 0. Consequently, the generalized
entropy is given by

S[p] = k(I [p] − I [p(0)]). (11)

By virtue of equation (7), S is a manifestly concave functional:

S[λp + (1 − λ)p′] � λS[p] + (1 − λ)S[p′] (∀ λ ∈ [0, 1]). (12)

We wish to emphasize that this concavity property is established irrespective of the properties
of f.

Let us first discuss a relatively simpler case when f is a monotonically decreasing function
defined in D = [0,∞). In this case, I in equation (9) can be further rewritten as

I [p] =
W∑
i=1

[
pif

−1(pi) −
∫ f −1(pi )

0
ds f (s)

]
+ WF (13)

where f −1 is the inverse function of f . Therefore, the generalized entropy reads

S[p] = k

{
W∑
i=1

[
pif

−1(pi) −
∫ f −1(pi )

0
ds f (s)

]
+ c

}
(14)

where c is a constant given by

c = W

∫ f −1(0)

0
ds f (s) +

∫ f −1(1)

f −1(0)

ds f (s) − f −1(1). (15)

Let us employ S in equation (14) as the entropy for the maximum entropy principle.
Consider the functional

�[p : α, β] = S[p] − α

(
W∑
i=1

pi − 1

)
− β

(
W∑
i=1

piQi − 〈Q〉
)

(16)

where Qi is the ith value of the basic random variable, Q, and α and β are the Lagrange
multipliers associated with the constraints on the normalization condition and on the linear
expectation value of Q denoted by 〈Q〉, respectively. (Here, clearly the ordinary expectation
value is assumed to be well defined. However, there exist distributions with no finite moments.
Celebrated examples are the Lévy stable distributions. To treat such distributions, it is
necessary to modify the definition of the expectation value. See the later remarks.) Under the
assumption of differentiability of f −1, variation of � with respect to {pi}i=1,2,...,W leads to the
following stationary distribution:

pi = f (α + βQi) (17)

provided that the positive constant, k, has been eliminated by rescaling the Lagrange
multipliers. α can be determined by the normalization condition:

∑W
i=1 f (α + βQi) = 1.

Therefore, an arbitrary monotonically decreasing distribution with the finite linear expectation
value of Q could be derived from the maximum entropy principle.

We emphasize that the variational principle is not sufficient for identifying the generalized
entropy associated with a given distribution, pi = f (α + βQi) [4]. An obvious example
revealing this point may be illustrated by taking the functional: �[p] ∼ ∑W

i=1

∫ pi ds f −1(s),
which also gives rise to the distribution of the same form as pi = f (α + βQi). However, this
� cannot be identified as a kind of entropy, since its concavity property is not consistent with
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arbitrary f, in general. This is in marked contrast to the present construction, in which S in
equation (11) is always concave, as already stressed.

The above discussion can immediately be applied to some important cases. Here, we
present two examples: (A) the stretched exponential distribution and (B) the κ-deformed
exponential distribution.

(A) The generalized entropy associated with the stretched exponential distribution: in this
case, f is taken to be

f (s) = exp(−sγ ) (s ∈ [0,∞), γ ∈ (0, 1)). (18)

Then, the associated generalized entropy is found to be given by

Sγ [p] =
W∑
i=1


(1 + 1/γ,− ln pi) − 1

γ

(1/γ ) (19)

where 
(u, x) is the incomplete gamma function of the second kind defined by 
(u, x) =∫ ∞
x

dt tu−1 e−t , and 
(u) = 
(u, 0) is the gamma function. The generalized entropy in
equation (19) is identical to the one recently discussed in [4], in which it seems to be postulated.
We mention that, taking the limit γ → 1−0 in the above discussion, f becomes the exponential
function of s and equation (19) converges to the ordinary Boltzmann–Gibbs–Shannon entropy,
SBGS[p] = −∑W

i=1 pi ln pi , as it should do [2].
(B) The generalized entropy associated with the κ-deformed exponential distribution

[5, 6]: in this case, f is taken to be

f (s) = exp{κ}(−s) ≡ (√
1 + κ2s2 − κs

)1/κ
(s ∈ [0,∞), κ ∈ (0, 1)). (20)

Though the range of κ can be extended to (−1, 1) [5, 6], we here consider only κ ∈ (0, 1) for
the sake of simplicity. For this function, equation (11) is calculated to be

Sκ [p] =
W∑
i=1

[
c−κ

(
p1−κ

i − pi

)
+ cκ

(
p1+κ

i − pi

)]
(21)

where

cκ = −1

2

(
1

κ
+

1

1 + κ

)
. (22)

This is precisely the κ-deformed entropy given in [5]. Similar to the previous example (A), f

in equation (20) and Sκ in equation (21) respectively converge to the exponential function e−s

and the Boltzmann–Gibbs–Shannon entropy in the limit κ → +0.
Now, we briefly look at the H-theorem for the entropy (11) with equation (9). For this,

consider the master equation

dpi

dt
=

W∑
j=1

(Aijpj − Ajipi) (23)

where Aij is the transition probability per unit time from the state j to the state i. Taking the
time derivative of equation (11), we have

dS[p]

dt
= k

W∑
i=1

∫
D

ds
dpi

dt
[1 − θ(pi − f (s))]

− k

W∑
i=1

∫
D

ds(pi − f (s))δ(pi − f (s))
dpi

dt
. (24)
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Noting that the second term on the right-hand side vanishes and using equation (23), we find

dS[p]

dt
= k

W∑
i=1

∫
D

ds

W∑
j=1

(Aijpj − Ajipi) [1 − θ (pi − f (s))] . (25)

Assuming the principle of microscopic reversibility [4, 7, 8]

Aij = Aji (26)

we obtain

dS[p]

dt
= k

2

W∑
i,j=1

∫
D

dsAij (pi − pj )[θ(pi − f (s)) − θ(pj − f (s))] � 0. (27)

Here, let us succinctly discuss the case when f in equation (2) is not monotonic. In such
a case, the domain interval D of f should be divided into the subintervals, {Da}, in which f

is piecewise monotonic. D is now the disjoint union of Da’s. Accordingly, equations (8) and
(9) are written as

I [p] =
∑

a

∫
Da

ds(1 − A[p; s)) (28)

and

I [p] =
∑

a

W∑
i=1

∫
Da

ds(pi − f (s))[1 − θ(pi − f (s))] + WF (29)

respectively. Let D∗
a = D∗

a(f
−1(pi)) be the subinterval of Da , in which pi < f (s). Then,

equation (29) can further be rewritten as follows:

I [p] =
∑

a

W∑
i=1

∫
D∗

a

ds(pi − f (s)) + WF

=
∑

a

W∑
i=1

[pil(D
∗
a(f

−1(pi))) − F ∗
a (f −1(pi))] + WF (30)

where l(D∗
a) is the length of the interval D∗

a and F ∗
a = ∫

D∗
a

ds f (s). Substitution of this
quantity into equation (11) leads to the generalized entropy optimized by a non-monotonic
distribution.

Finally, we mention that the Legendre transform structure highlighted by the relation
∂S

∂〈Q〉 = β (31)

exists in the present generalized theory. This is due to the fact [9, 10] that equation (31) holds
for an arbitrary form of the entropy and an arbitrary definition of the expectation value.

In conclusion, we have constructed the generalized entropy, which is optimized by any
given statistical distribution. We have shown that it is concave irrespective of the properties
of the distribution and satisfies the H-theorem for the master equation combined with the
principle of microscopic reversibility. This can be regarded as an ultimate generalization of
the maximum entropy principle. The present approach assumes that the distribution has a
finite linear expectation value of a basic random quantity of interest. If the lowest moments
are divergent, then the definition of the expectation value should be modified. For example, in
Tsallis statistics [11–13], the optimal distribution is the so-called q-exponential distribution,
which can asymptotically be a power-law distribution. In this case, the expectation value
should be defined in terms of the escort distribution [12, 14, 15]. Regarding the necessity of
modifying the definition of the expectation value, approaches from the different perspectives
are needed [16].
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